If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12r^2-12r-1=0
a = 12; b = -12; c = -1;
Δ = b2-4ac
Δ = -122-4·12·(-1)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-8\sqrt{3}}{2*12}=\frac{12-8\sqrt{3}}{24} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+8\sqrt{3}}{2*12}=\frac{12+8\sqrt{3}}{24} $
| (1÷x+1)-(2÷x+2)=(3÷x+3)-(4÷x+4) | | 3(5-2h)=9+-30 | | 13x+30+5+6=180 | | 16.72=3g+3.79 | | 9a=92 | | 10x-27=17 | | w/25=50 | | –4x–11=–13 | | -3x2+30x-48=0 | | |22-3x|=5 | | 5v^2=13v-6 | | -18.43=3.99+x | | 6/s+5+5-5/2=3 | | 25x^2=1764 | | 0.25(4y-3)=0.5y9 | | 7/10=50/x | | 7+x+16=59,x | | -10.2=k-1.4,k | | 40x+15(1.5x)=1000 | | 8/12=x/x+1 | | 2/3t+5=28 | | 4√x=3(x-5) | | 2y+2×=3 | | K(2k+5)=3 | | 14+3(x-6)=29 | | x2-6x+65=0 | | 7(25-q)-2q=2(3q-25 | | 5(2x+1)=-(x-3)-4 | | 2x(300x-x^2+6100)=0 | | 90=(11x+4)+(3x+10) | | 0.5-1.7z=0.74+2.3z | | 3x2–2x–10=0 |